\qquad

Due: November 29, 2016

\qquad 1. Let f be a function such that $f(x)=2 x-4$ is defined on the domain $2 \leq x \leq 6$. The range of this function is
A. $0 \leq y \leq 8$
B. $0 \leq y<\infty$
C. $2 \leq y \leq 6$
D. $-\infty<y<\infty$
2. Which ordered pair is in the solution set of both the inequalities $y \leq 3 x+1$ and $x-y>1$?
A. $(-1,-2)$
B. $(2,-1)$
C. $(1,2)$
D. $(-1,2)$
3. If $k=a m+3 m x$, the value of m in terms of a, k, and x can be expressed as
A. $\frac{k}{a+3 x}$
B. $\frac{k-3 m x}{a}$
C. $\frac{k-a m}{3 x}$
D. $\frac{k-a}{3 x}$
\qquad 4. When $6 x^{2}-4 x+3$ is subtracted from $3 x^{2}-2 x+3$ the result is
A. $3 x^{2}-2 x$
B. $-3 x^{2}+2 x$
C. $3 x^{2}-6 x+6$
D. $-3 x^{2}-6 x+6$
5. What is the slope of a line that passes through the points $(-5,4)$ and $(15,-4)$?
A. $-\frac{2}{5}$
B. 0
C. $-\frac{5}{2}$
D. undefined
6. If $2 x+5=-25$ and $-3 m-6=48$ what is the product of x and m ?
A. -270
B. -33
C. 3
D. 270

Short Answer

Please show all work on a separate piece of paper and/or graph paper.
7. Solve algebraically: $\frac{2}{3 x}+\frac{4}{x}=\frac{7}{x+1}$
8. The sum of three consecutive odd integers is 18 less than five times the middle number. Find the three integers. [Only an algebraic solution can receive full credit.]
9. John has four more nickels than dimes in his pocket, for a total of $\$ 1.25$. How many nickels and dimes does he have? [Only an algebraic solution can receive full credit.]
10. Solve algebraically for $x: 2(x-4) \geq \frac{1}{2}(5-3 x)$
11. Solve the equation for a in terms of $x: 4(a x+3)=3 a x-25+3 a$
12. The volume of a large can of tuna fish can be calculated using the formula $V=\pi r^{2} h$. Write an equation to find the radius, r, in terms of V and h. Determine the diameter, to the nearest inch, of a large can of tuna fish that has a volume of 66 cubic inches and a height of 3.3 inches.
13. David has two jobs. He earns $\$ 8$ per hour babysitting his neighbor's children and he earns $\$ 11$ per hour working at the coffee shop. Write an inequality to represent the number of hours, x, babysitting and the number of hours, y, working at the coffee shop that David will need to work to earn a minimum of $\mathbf{\$ 2 0 0}$. David worked 15 hours at the coffee shop. Use the inequality to find the number of full hours he must babysit to reach his goal of $\mathbf{\$ 2 0 0}$.
14. Simplify the following expression: $2 x\left(3 x^{2}+5\right)-3\left(4 x^{2}-9\right)-2\left(x^{2}-4 x-6\right)$
15. If $f(x)=\frac{x}{x^{2}-16}$, what is the value of $f(10)$?
16. For $y=\frac{3}{\sqrt{x-4}}$ what are the domain and range?

